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Abstract
Accurate estimation of cognitive scores for patients can help track the progress of neurological
diseases. In this paper, we present a novel semi-supervised multimodal relevance vector regression
(SM-RVR) method for predicting clinical scores of neurological diseases from multimodal
imaging and biological biomarker, to help evaluate pathological stage and predict progression of
diseases, e.g., Alzheimer’s diseases (AD). Unlike most existing methods, we predict clinical
scores from multimodal (imaging and biological) biomarkers, including MRI, FDG-PET, and
CSF. Considering that the clinical scores of mild cognitive impairment (MCI) subjects are often
less stable compared to those of AD and normal control (NC) subjects due to the heterogeneity of
MCI, we use only the multimodal data of MCI subjects, but no corresponding clinical scores, to
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train a semi-supervised model for enhancing the estimation of clinical scores for AD and NC
subjects. We also develop a new strategy for selecting the most informative MCI subjects. We
evaluate the performance of our approach on 202 subjects with all three modalities of data (MRI,
FDG-PET and CSF) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The
experimental results show that our SM-RVR method achieves a root-mean-square error (RMSE)
of 1.91 and a correlation coefficient (CORR) of 0.80 for estimating the MMSE scores, and also a
RMSE of 4.45 and a CORR of 0.78 for estimating the ADAS-Cog scores, demonstrating very
promising performances in AD studies.

Keywords
Alzheimer’s disease (AD); Mild cognitive impairment (MCI); Semi-supervised learning;
Relevance vector regression (RVR); Multimodality

Introduction
Many pattern classification methods have been proposed for the diagnosis of Alzheimer’s
disease (AD) or its prodromal stage, mild cognitive impairment (MCI). However, most
existing pattern classification methods aim only for the binary classification, i.e., identifying
whether a subject is diseased or healthy from the imaging data. Recently, many researchers
have started investigating the application of pattern regression methods to estimating the
continuous clinical scores from brain images (Fan et al. 2010; Stonnington et al. 2010;
Wang et al. 2010). Compared to pattern classification, pattern regression methods can help
assess pathological stage and predict future progression of neurological diseases. It is well
known that many diseases result in a continuous spectrum of structural and functional
changes. For example, AD pathology is known to progress gradually over many years,
sometimes starting decades before a final clinical stage (Wang et al. 2010). Many studies on
the combination of neuropsychological and neuroimaging data show that the preclinical AD
is associated with both cognitive and imaging changes (Caselli et al. 2009, 2007; Reiman et
al. 1996, 2009; Twamley et al. 2006). Therefore, pattern regression methods can potentially
be used to estimate the continuous clinical scores from neuropsychological and
neuroimaging data for helping assess the stage of AD disease or predict clinical outcome.

Most existing methods for estimating cognitive test scores use only a single modality of
data, e.g., magnetic resonance imaging (MRI) (Fan et al. 2010; Stonnington et al. 2010;
Wang et al. 2010). However, biomarkers from different modalities can provide
complementary information for AD diagnosis, which is demonstrated in the recent works on
multimodal AD diagnosis (Bouwman et al. 2007b; Chetelat et al. 2005; Fan et al. 2008b;
Fellgiebel et al. 2007; Geroldi et al. 2006; Hinrichs et al. 2009a, b; Vemuri et al. 2009;
Visser et al. 2002; Walhovd et al. 2010a, b; Zhang et al. 2011). For example, MRI can
measure spatial patterns of atrophy, and thus can be used to define surrogate markers of the
underlying neurodegenerative AD pathology (Fan et al. 2008a). Fluorodeoxyglucose
positron emission tomography (FDG-PET) may detect early neocortical dysfunction before
atrophy appears (De Santi et al. 2001). Specifically, some recent studies have reported the
reduction of glucose metabolism in parietal, posterior cingulate, and temporal brain regions
with FDG-PET in AD patients (Diehl et al. 2004; Drzezga et al. 2003). Also, before the
appearance of atrophy and the reduction of glucose metabolism, the biological cerebrospinal
fluid (CSF) markers (such as concentrations of amyloid β (Aβ42)) can appear at brain
regions of AD patients (Bouwman et al. 2007b; de Leon et al. 2007; Fjell et al. 2010).
Therefore, these multimodal data can be potentially used jointly for estimation of clinical
cognitive test scores.
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On the other hand, supervised relevance vector machine regression (RVR) method (Tipping
2001) has been adopted to estimate the continuous clinical scores from brain images (Fan et
al. 2010; Stonnington et al. 2010; Wang et al. 2010). Moreover, Duchesne et al. (2009)
demonstrated the relationship between the baseline MRI features and the decline in the
Mini-Mental State Exam (MMSE) after 1 year using linear regression modeling for subjects
with MCI (Duchesne et al. 2009). In addition, the Alzheimer’s Disease Assessment Scale-
Cognitive subtest (ADAS-Cog) is the gold standard in AD drug trials for cognitive
assessment (Rosen et al. 1984). In all aforementioned studies, the supervised regression
models are employed, which often require many labeled data for training in order to achieve
good performance. However, the amount of labeled brain image data is usually limited in
clinical practice. Also, due to the heterogeneity of MCI, the clinical scores obtained in
cognitive tests, including MMSE and ADAS-Cog (Inoue et al. 2011), are less stable than
those for AD and NC subjects. To partially alleviate this issue, instead of using the clinical
scores of MCI subjects in this study, we propose to use only their multimodal data to help
train a semi-supervised regression model.

To the best of our knowledge, no previous studies have investigated the use of MCI subjects
as unlabeled data for constructing a semi-supervised regression model to estimate the
cognitive performance from multimodal imaging and non-imaging data. We do however,
notice that some investigators have used MCI subjects (also as unlabeled data) for
constructing semi-supervised classification models and then using them for classifying AD
patients from normal controls (NC) (Filipovych et al. 2011; Zhang and Shen 2011).
However, these semi-supervised classification models can only deal with discrete category
(usually binary, i.e., diseased or normal), but cannot estimate continuous clinical scores for
disease progression as discussed in this paper. We propose a semi-supervised multimodal
relevance vector regression (SM-RVR) method to estimate clinical scores from both
imaging and biological biomarkers (i.e., MRI, FDG-PET, and CSF) for new subjects.
Moreover, we develop a new strategy to select the most informative MCI subjects for
training our semi-supervised regression model (SM-RVR).

In our proposed SM-RVR method, we first employ a k-nearest neighbor (k-NN) regression
model to estimate the clinical scores for the MCI training subjects. Then, we use a
supervised multimodal RVR (M-RVR) to select the most informative MCI subjects by
iteratively testing the capability of each MCI training subject in enhancing the estimation of
clinical scores for the new testing subjects. Finally, we train an M-RVR model using all AD
and NC training subjects and also those selected informative MCI subjects. We have
evaluated the performance of our method on 202 subjects from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database and achieved very promising results as compared
to the state-of-the-art methods.

Method
The data used in the preparation of this article were obtained from the ADNI database
(www.loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceutical companies and non-profit
organizations, as a $60 million, 5-year public-private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific markers
of very early AD progression is intended to aid researchers and clinicians in developing new
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treatments and monitor their effectiveness, as well as to lessen the time and cost of clinical
trials.

ADNI is the result of efforts by many co-investigators from a broad range of academic
institutions and private corporations. Subjects have been recruited from over 50 sites across
the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, aged 55 to 90, to
participate in the research-approximately 200 cognitively normal older individuals to be
followed for 3 years, 400 people with MCI to be followed for 3 years, and 200 people with
early AD to be followed for 2 years (see www.adni-info.org for up-to-date information). The
research protocol was approved by each local institutional review board and written
informed consent was obtained from each participant.

Subjects
The ADNI general eligibility criteria are described at www.adni-info.org. Briefly, subjects
are between 55 and 90 years of age and have a study partner able to provide an independent
evaluation of functioning. Specific psycho-active medications will be excluded. General
inclusion/exclusion criteria are as follows: 1) healthy subjects: Mini-Mental State
Examination (MMSE) scores between 24 and 30, a Clinical Dementia Rating (CDR) of 0,
non-depressed, non MCI, and non-demented; 2) MCI subjects: MMSE scores between 24
and 30, a memory complaint, having objective memory loss measured by education adjusted
scores on Wechsler Memory Scale Logical Memory II, a CDR of 0.5, absence of significant
levels of impairment in other cognitive domains, essentially preserved activities of daily
living, and an absence of dementia; and 3) Mild AD: MMSE scores between 20 and 26,
CDR of 0.5 or 1.0, and meets the National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association
(NINCDS/ADRDA) criteria for probable AD.

In this paper, all ADNI subjects with all corresponding baseline MRI, FDG-PET and CSF
data were selected, leading to a total of 202 subjects, including 51 AD patients, 99 MCI
patients (including 43 MCI converters (MCI-C) and 56 MCI non-converters (MCI-NC)),
and 52 normal controls. Table 1 lists the demographics of all these subjects.

MRI, PET and CSF
All MRI data were acquired from 1.5 T scanners. Data were collected by a variety of
scanners with protocols individualized for each scanner. Raw Digital Imaging and
Communications in Medicine (DICOM) MRI scans were reviewed for quality. Spatial
distortions caused by gradient nonlinearity and B1 field inhomogeneity were automatically
corrected. PET images were acquired 30–60 min post-injection, averaged, spatially aligned,
interpolated to a standard voxel size, intensity normalized, and smoothed to a common
resolution of 8-mm full width at half maximum. CSF was collected in the morning after an
overnight fast using a 20- or 24-gauge spinal needle, frozen within 1 h of collection, and
transported on dry ice to the ADNI Biomarker Core laboratory at the University of
Pennsylvania Medical Center. In this paper, CSF Aβ42, CSF t-tau, and CSF p-tau are used
as features.

Image Analysis
To obtain effective image features for score estimation, we use the specific application tool
for image pre-processing similar to (Zhang et al. 2011). First, for all images, we corrected
the intensity inhomogeneity using the N3 algorithm (Sled et al. 1998). Next, for all structural
MR images, we used both brain surface extractor (BSE) (Shattuck et al. 2001) and brain
extraction tool (BET) (Smith 2002) to perform skull-stripping. Then, we further removed
cerebellum material. After skull-stripping and cerebellum removal, for each structural MR
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image, we used the FSL package (Zhang et al. 2001) to segment it into three different
tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). After tissue
segmentation, we use atlas warping to partition each subject into 93 ROIs via a template
shown in Fig. 1. Then, for each of 93 ROIs, we computed the volume of GM tissue in that
ROI as a feature. For the PET image, we used a rigid transformation to align it onto its
respective MR image of the same subject, and then computed the average intensity of each
ROI in the PET image as a feature. By performing this series of image pre-processing steps,
for each subject we acquire 93 features from the MRI image, and another 93 features from
the PET image. In addition, we used 3 features from the CSF biomarkers, as mentioned
above.

Semi-Supervised Multimodal RVR (SM-RVR)
In this section, we first extended the standard relevance vector regression (RVR) method to
the multimodal RVR (M-RVR), and then employed the k-NN regression and M-RVR for
selecting the most informative MCI subjects. Finally, we trained an M-RVR model using all
AD and NC training subjects, and the selected more-informative MCI subjects to estimate
the clinical scores of new subjects.

Multimodal Relevance Vector Regression (M-RVR)
Relevance Vector Regression (RVR): We will first briefly review the standard RVR
algorithm. The main idea of RVR is summarized as follows. Specifically, RVR is a sparse
kernel method formulated in a Bayesian framework (Tipping 2001). Given a training set

with its corresponding target values, such as , RVR aims to find out the relationship
between the input feature vector x and its corresponding target value t:

(1)

Where εi is the measurement noise (assumed independent and following a zero-mean
Gaussian distribution), and f(x, w) is a linear combination of basis kernel functions k(x, xi)
with the following form:

(2)

Where w = (w0, w1,…, wN)T is a weight vector. According to (Tipping 2001), we can obtain
a sparse kernel regression model based on the weight vector w.

Multimodal RVR (M-RVR): Now we can extend RVR to multimodal RVR (M-RVR) for
multimodal regression by defining a new integrated kernel function for comparison of two
multimodal data x and xi as below:

(3)

Where x(m) and xi
(m) denote the m-th modality of multi-modal data x and xi, respectively,

k(m) denotes the kernel function over the m-th modality, and cm denotes the weight on the
m-th modality. This new integrated multiple-kernel can be embedded into the conventional
single-kernel RVR, and thus solved by the programs developed for the conventional single-
kernel RVR (Tipping 2001). To find the optimal values for the weights cm, in this paper, we
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constrained them so that ∑mcm = 1 and then adopt a coarse-grid search through cross-
validation on the training samples, which has been shown effective in our previous work for
multi-kernel support vector machine (SVM) (Zhang and Shen 2011; Zhang et al. 2012,
2011). Compared with most existing multi-kernel learning methods (Rakotomamonjy et al.
2008; Wang et al. 2008; Xu et al. 2010), the main advantage of our method is that it can be
conveniently embedded into the conventional RVR and thus solved using the conventional
RVR solvers, e.g., Sparse Bayesian toolbox (Tipping 2001). In this paper, we used M-RVR
to fuse data from three different modalities, i.e., MRI, PET and CSF. Figure 2 shows the
flowchart of M-RVR for multimodal regression using MRI, PET and CSF data.

Semi-Supervised M-RVR (SM-RVR)—As discussed before, due to the heterogeneity of
MCI, the clinical scores of MCI subjects are usually less stable than those of the AD and NC
subjects. Therefore, the direct use of MCI subjects (i.e., including their corresponding
clinical scores as targets) together with the AD and NC subjects for training the regression
model could lead to low performance. To address this issue, we propose to first employ the
k-NN regression method for estimating clinical scores of MCI subjects by using clinical
scores of the AD and NC subjects, which are more stable than those of MCI subjects. Then,
we suggest using M-RVR to select the most informative MCI subjects for subsequent data
regression by iteratively testing the capability of each MCI training subject in enhancing the
estimation of clinical scores for the new testing subjects. These two steps are described
below one by one.

Estimating Clinical Scores of MCI Subjects: Figure 3 plots the distributions of AD, NC,
and MCI subjects with CSF features. As we can see from Fig. 3, there exists a large overlap
between MCI subjects and AD/NC subjects. This overlap implies that in the CSF feature
space the MCI subjects are similar to some AD or NC subjects. Similar phenomena can also
be observed in MRI and PET feature spaces, which to some extent explains why AD and NC
subjects can be used for estimating the clinical scores of MCI subjects. The flowchart of
estimating clinical scores of MCI subjects is shown in Fig. 4. Specifically, for each modality
of MRI, PET, and CSF, we used a respective k-NN (i.e., find the k-nearest neighbors among
AD and NC training subjects) to estimate clinical scores of each MCI subject, and then
computed the average of estimated scores from all three modalities as the final clinical score
for that MCI subject.

M-RVR Based Recursive Sample Selection, to Select the Most Informative MCI
Subjects: After getting the estimated clinical score for each MCI subject, one can simply
merge those ‘relabeled’ MCI subjects with AD and NC training subjects to train a regression
model. However, to further improve the performance, we propose to first select the most
informative MCI subjects and then use them together with the AD and NC training subjects
to train the regression model. The flowchart of selecting the most informative MCI subjects
is shown in Fig. 5. Specifically, we denote L as the labeled set which initially contains only
AD and NC training subjects, and denote U = [ u1,…, ui,…, ur] as the unlabeled set which
initially contains all MCI subjects with their estimated clinical scores (from AD and NC
training subjects using k-NN) as targeted values. Then, we individually combine each
sample in U with all samples in L to train an M-RVR regression model (using L as
corresponding testing set) and record the corresponding root-mean-square error (RMSE).
Finally, the sample ui0 with the minimum RMSE value (i.e., most informative) in U is
selected and added into L, and further deleted from U. The above procedure was repeated
for T iterations to select the most informative subset of MCI subjects.

Finally, we trained the M-RVR model using the AD and NC training subjects and also those
above-selected most informative MCI subjects (with their estimated clinical scores as
targets) to estimate the clinical scores for the new test subjects.
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Validation: To evaluate the performance of our proposed method, we adopted the popular
root-mean-square error (RMSE) and the correlation coefficient (CORR) as performance
measures. In our experiments, we used a 10-fold cross-validation strategy to divide the
labeled sample set (i.e., AD and NC subjects) into a training set and a testing set.
Specifically, the whole labeled sample set was equally partitioned into 10 subsets. Each
time, the subject samples within one subset were successively selected as the testing samples
and all remaining subject samples in the other 9 subsets were used for training. This process
was repeated for 10 times independently to avoid any bias introduced by randomly
partitioning the dataset in the cross-validation. The RVM regression learner was
implemented using Sparse Bayesian toolbox,1 with the Gaussian kernel. The iteration
number T (1≤T≤99), the Gaussian kernel width σ ∈ {2,4,8,16,32,64,128,256,512}, and the
number of the nearest neighbors k (1≤k≤20) were learned based on the training samples by
another cross validation. Similarly, the weights in the M-RVR were also learned based on
the training samples, through a grid search using the range from 0 to 1 at a step size of 0.1.
Also, for each modality feature in the labeled samples and the unlabeled samples, the same
feature normalization scheme as used in (Zhang et al. 2011) was adopted here.

Results
Comparison on Different Combinations of MRI, PET and CSF Modalities

We first evaluated the performance of SM-RVR on different combinations of MRI, PET and
CSF modalities (with totally 7 different combinations). Table 2 shows the performance
measures of our SM-RVR method for different combinations. Figures 6 and 7 give the
corresponding scatter plots of the actual clinical scores vs. the estimated clinical scores for
the estimation of MMSE and ADAS-Cog scores, respectively. As we can see from Table 2
and Figs. 6 and 7, the combination of MRI, PET, and CSF can consistently achieve better
results than both single-modality and two-modalities cases. Specifically, SM-RVR using all
three modalities can achieve a RMSE of 1.92 and a CORR of 0.80 for MMSE scores, and a
RMSE of 4.45 and a CORR of 0.78 for ADAS-Cog scores as shown in Table 2. Table 2 also
indicates that the use of two modalities can also improve the regression performance
compared with the single-modality cases, although they are inferior to the use of all three
modalities. These results validate the advantage of multimodal regression over the
conventional single-modal regression in estimation of clinical scores.

Furthermore, to investigate the effect of different combining weights of MRI, PET and CSF
(CMRI, CPET and CCSF) in the estimation of MMSE and ADAS-Cog scores by our SM-RVR
method, we tested all of their possible values, ranging from 0 to 1 at a step size of 0.1, under
the constraint of CMRI + CPET + CCSF = 1. Figures 8 and 9 give MMSE and ADAS-Cog
estimation results with respect to different combining weights of MRI, PET and CSF for our
SM-RVR method, respectively. Figures 8(a) and 9(a) show the RMSE with respect to
different combining weights of MRI, PET and CSF for MMSE and ADAS-Cog estimations,
respectively, while Figs. 8(b) and 9(b) show the correlation coefficient (CORR) with respect
to different combining weights of MRI, PET and CSF for MMSE and ADAS-Cog
estimations, respectively. Note that in each plot of Figs. 8 and 9, only the squares in the
upper triangular part have valid values because of the constraint CCSF + CMRI + CPET = 1.
Also, in each plot, the three vertices of the upper triangle, i.e., the top left, top right, and
bottom left squares, denote the individual-modality based regression results, respectively.
Moreover, for each plot, the three edges of the upper triangle (excluding the three vertices of
the upper triangle) denote two-modalities based regression results using MRI+CSF
(CPET=0), MRI+PET (CCSF=0), and CSF+PET (CMRI=0). From Figs. 8 (a) and 9(a), most of

1http://www.miketipping.com/index.php?page=rvm
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RMSE values within squares of the upper triangle are smaller than those on the three
vertices and edges. Also, Figs. 8(b) and 9(b) show that most of CORR values within squares
of the upper triangle are larger than those on the three vertices and edges. These results
further validate that combining three modalities can achieve better regression results than
combining only two modalities or using only one modality.

Comparsion with Supervised M-RVR and Other Variants
To investigate the efficacy of using the unlabeled MCI samples for helping regression, we
first compare SM-RVR with the supervised M-RVR (M-RVR for short). In our experiment,
we implemented two versions of M-RVR, i.e., 1) M-RVR (AD+NC) which trains a
supervised model using only the AD and NC subjects, and 2) M-RVR (AD+NC+MCI)
which trains a supervised model using not only the AD and NC subjects, but also the extra
MCI subjects (with their corresponding clinical scores). Here, for fair comparison, all
methods (including both versions of M-RVR and SM-RVR) are validated on the same
testing data involving only the AD and NC subjects, since the corresponding clinical scores
of the MCI subjects are less stable due to the heterogeneity of MCI. Notice that although
both M-RVR and SM-RVR involve MCI subjects in training models, the former uses both
data and the corresponding clinical scores of MCI subjects (together with AD and NC
subjects) for training a supervised model, while the latter uses only the data of MCI subjects
as unlabeled data (together with the labeled AD and NC subjects) for training a semi-
supervised model. The corresponding results are shown in Table 3. As shown in Table 3,
SM-RVR consistently outperforms the two different versions of M-RVR on each
performance measure. These findings validate the efficacy of our SM-RVR method in using
MCI subjects as unlabeled samples in a semi-supervised framework for improving
regression predictive utility. Furthermore, in Fig. 10, we plotted the curves of regression
performance measures (i.e., RMSE and CORR) with respect to the use of different number
of unlabeled MCI samples for SM-RVR. It shows that the regression performance of SM-
RVR steadily improves at first as the number of unlabeled MCI samples increases, (and is
significantly better than that of M-RVR in most cases), but it decreases after reaching a
certain value. This indicates the importance of using only the selected informative MCI
subjects, not all MCI subjects, as unlabeled samples for estimation of clinical scores.

To further validate the efficacy of selecting the most informative MCI subjects for clinical
score estimation, we also implemented a variant of SM-RVR, i.e., SM-RVR without
selecting the most informative MCI subjects (denoted here as UNSM-RVR). Specifically, in
the UNSM-RVR method, MCI subjects (with their corresponding estimated clinical scores)
are directly combined with AD and NC training subjects to train the M-RVR regression
model. In Fig. 10, we also plotted the curves of regression performance measures (i.e.,
RMSE and CORR) with respect to the use of different number of unlabeled MCI samples
when using SM-RVR and UNSM-RVR methods. Here, for UNSM-RVR, we randomly
choose a part of MCI samples and directly merged them with the current training set (i.e.,
training AD and NC subjects) to train the regression model. From Fig. 10, we can observe
that both curves show a rising trend in performance with the increase of MCI subjects in
most cases, but SM-RVR is significantly and consistently better than UNSM-RVR in
estimating both MMSE and ADAS-Cog scores. This implies that the use of selected MCI
subjects as unlabeled samples is superior to using the selected MCI subjects as labeled
samples, and also better than the use of all available MCI subjects in clinical score
estimation.

Discussion
In this paper, we have proposed a new semisupervised multimodal regression method, called
SM-RVR, to estimate standard clinical cognitive test scores (including MMSE and ADAS-
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Cog) from multimodal brain imaging and non-imaging data. The experimental results on
202 subjects (with all acquired MRI, FDG-PET and CSF data) from ADNI database show
that our method can consistently and substantially improve the regression performance,
compared with the individual modality-based regression methods or the conventional
supervised multimodal regression methods. Our experiment’s results validate our
assumption that the clinical scores of MCI subjects are less stable than those of AD and NC
subjects due to the heterogeneity of MCI, and thus provide little help in further improving
the performance of a supervised model trained using AD and NC subjects. On the other
hand, the multimodal data of MCI subjects may contain more useful information than their
corresponding clinical scores, and can lead to great performance improvement if used for
training a semi-supervised model by treating the MCI subjects as unlabeled data and the AD
and NC subjects as labeled data. As for clinical applications, our method can be used to help
assess the pathological stage and further predict the future progression of AD or other
neurological diseases.

Semi-Supervised Learning
Semi-supervised learning is a recently developed machine learning technique, which learns
from both labeled and unlabeled samples (Adams 2009; Belkin et al. 2004; Belkin and
Niyogi 2004; Belkin et al. 2006; Ding and Zhao 2010; Ni et al. 2012). In the semi-
supervised learning, one key issue is how to estimate labels for the new samples by using the
relatedness between labeled and unlabeled samples. The existing semi-supervised learning
methods deal with this issue in the following ways: (1) using a manifold hypothesis and the
graph Laplacian for delivering the relatedness between labeled and unlabeled samples
(Belkin et al. 2004; Belkin and Niyogi 2004; Belkin et al. 2006); (2) learning a propagable
graph for semi-supervised classification and regression (Ni et al. 2012); (3) transductive
learning and varifold Laplacian framework based on the hypothesis of weaker varifold
structure (Bruzzone et al. 2006; Ding and Zhao 2010), etc.

Recently, some researchers have used semi-supervised classification methods to diagnose
AD or MCI with brain images (Filipovych et al. 2011; Zhang and Shen 2011). In
(Filipovych et al. 2011), MCI subjects are used as unlabeled samples, and the transductive
SVM is adopted for MCI conversion classification. In (Zhang and Shen 2011), MCI subjects
are also used as unlabeled samples while the multimodal LapRLS method is adopted for AD
vs. NC classification. Both studies suggest that the semi-supervised methods can achieve
better performance than the corresponding supervised methods by using unlabeled data
(MCI subjects in both cases). However, pattern classification methods can only assign a
discrete category to each subject, and cannot deal with continuous scores in disease
progression. Accordingly, in this paper, we proposed to use the semi-supervised regression
model for estimating continuous clinical cognitive test scores from multimodal data.
Experimental results demonstrate that our method achieved better regression performance
than the conventional supervised regression methods.

Multimodal Regression
Many recent studies have indicated that different modalities contain complementary
information for discrimination of AD, and thus many works on combining different
modalities of biomarkers have been reported for multimodal classification(Bouwman et al.
2007a; Chetelat et al. 2005; Fan et al. 2008b; Fellgiebel et al. 2007; Geroldi et al. 2006;
Vemuri et al. 2009; Visser et al. 2002; Walhovd et al. 2010a). In those methods, features
from all different modalities are typically concatenated into a longer feature vector for the
purpose of multimodal classification. More recently, the multiple-kernel method has also
been used for multimodal data fusion and classification, and achieves better performance
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than the feature concatenation method (Hinrichs et al. 2011; Hinrichs et al. 2009b; Zhang et
al. 2011).

In this paper, we also compare M-RVR and SM-RVR with the corresponding feature
concatenation method, with results shown in Table 4. As we can see from Table 4, both
multi-kernel based methods (including SM-RVR and M-RVR) achieve better performance
than the corresponding feature concatenation methods. For example, SM-RVR achieves a
RMSE of 1.92 and a CORR of 0.80 for estimating MMSE scores, and a RMSE of 4.45 and a
CORR of 0.78 for estimating ADAS-Cog scores, respectively, while the corresponding
feature concatenation methods (namely SMConcat) achieve only RMSE of 2.07 and 4.72,
and CORR of 0.75 and 0.75 for estimating MMSE and ADAS-Cog scores, respectively.

We also perform experiments to compare RVR with another popular regression method, i.e.,
support vector regression (SVR), in multimodal regression. To do this, we replace RVR with
SVR in both M-RVR and SM-RVR, and denote the corresponding methods as M-SVR and
SM-SVR, respectively. Table 5 gives the comparisons between these different methods. It
indicates that both RVR based methods (including SM-RVR and M-RVR) achieve better
performance than the corresponding SVR based methods (including SM-SVR and M-SVR)
on high-dimensional pattern regression.

Estimating Clinical Scores
Several recent works in AD research have studied estimating the clinical scores from brain
images (Fan et al. 2010; Stonnington et al. 2010; Wang et al. 2010). It is worth noting that
most existing works on estimating clinical scores are based on the supervised regression
models using a single-modal data. In our previous work (Zhang et al. 2012), we developed a
multimodal multi-task learning model for jointly estimating multiple clinical scores from
multimodal imaging data, showing improved performance over single-modal based
methods. However, the model proposed in (Zhang et al. 2012) is still a supervised regression
model and thus cannot effectively integrate MCI subjects (with less stable clinical scores)
for helping build the regression model.

For a clear comparison, in Table 6 we listed several state-of-the-art methods on estimating
clinical scores, along with their respective performances. Specifically, in (Wang et al. 2010),
a Bagging RVR was adopted to estimate the MMSE score from the baseline MRI data, and
the best result of RMSE of 3.29 and the correlation coefficient of 0.76 were achieved on 23
AD, 74 MCI and 22 NC. In (Fan et al. 2010), a recursive feature elimination strategy for
feature selection and RVR were adopted to estimate MMSE and ADAS-Cog scores from
structural MRI data, and the best results of RMSE of 2.12 and 5.03 and the CORR of 0.57
and 0.52 were achieved on 52AD, 148 MCI and 64 NC in estimating MMSE and ADAS-
Cog scores, respectively. In (Stonnington et al. 2010), a RVR was adopted to estimate
MMSE and ADAS-Cog scores from MRI data, and the best results of CORR of 0.7 and 0.57
were achieved on dataset 1 (73 AD, 91 NC), dataset 2 (113 AD, 351 MCI, 122 NC) and
dataset 3 (39 AD, 92MCI, 32NC) in estimating MMSE and ADAS-Cog scores, respectively.
In contrast, our proposed SM-RVR can achieve the best result of RMSE of 1.92 and the
CORR of 0.80 for the MMSE score, and RMSE of 4.45 and the CORR of 0.78 for the
ADAS-Cog score. These results validate the advantage of our method, compared with the
conventional supervised and individual-modality-based regression methods.

Predicting the Future Conversion of MCI Subjects
In addition to estimating the clinical scores, the proposed SM-RVR method can also be used
for predicting the future conversion of MCI subjects, from the multimodal imaging and non-
imaging biomarkers. Although the full investigation on this issue is beyond the main scope
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of the current paper, we examine the classification performance of our SM-RVR method
using the same dataset with 51 AD, 52 NC, and 99 MCI (including 43 MCI converters
(MCI-C) and 56 MCI non-converters (MCI-NC)). For training SM-RVR model for
classification between MCI-C and MCI-NC, we adopt the 10-fold cross-validation strategy
to divide the training and testing set for 99 MCI subjects, and use the training MCI subjects
as unlabeled data together with all AD and NC subjects as labeled data to train a semi-
supervised model. For comparison, we also report the classification results of M-RVR using
the same training data as SM-RVR (i.e., training set of MCI subjects and all AD and NC
subjects). However, different from SM-RVR, M-RVR trains a supervised model by treating
the AD and MCI-C as one class and the NC and MCI-NC as the other class. On the dataset
mentioned, our SM-RVR method achieves a classification accuracy of 69.4 % (with 72.4 %
sensitivity and 67.8 % specificity), which is comparable to some recently reported results for
MCI conversion prediction in the literature. In contrast, M-RVR only achieves a
classification accuracy of 66.4 % (with 69.3 % sensitivity and 63.7 % specificity). Also, the
M-RVR with only using the AD and NC as training set for MCI conversion prediction
achieves a classification accuracy of only 58.4 % (with 64.1 % sensitivity and 54.1 %
specificity). This again validates the advantage of our SM-RVR method over the
conventional methods in predicting the future conversion of MCI to AD.

Clinical Implications
Current clinical practice in Alzheimer’s disease (AD) relies of brain imaging and other
diagnostic tests primarily to rule out other entities, such as vascular dementia. Although CSF
amyloid and tau biomarker tests are commercially available, they are seldom used due
primarily to the lack of an effective disease-modifying therapy. The ADNI consortium
dataset provides a robust sample for investigating and validating clinically relevant
biomarkers along the spectrum from MCI to AD. The wealth of data available from
volumetric MRI brain scans, fluorodeoxyglucose PET imaging, and CSF amyloid and tau
markers, together with a standard clinical assessment test battery are designed to facilitate
the development of more useful clinic diagnostic tests and objective therapeutic outcome
measures. The superior results achieved with SM-RVR using all three modalities are not
surprising, as each of the three modalities reflects complementary and clinically relevant
information. CSF amyloid and tau markers may be more useful in pre-clinical diagnosis and
therapeutic monitoring of specific anti-amyloid and/or anti-tau therapeutic agents.
Quantitative MRI measures of brain atrophy, particularly in the hippocampal regions, are
more likely to reflect episodic memory deficits that are the sine qua non of AD and the
amnestic form of MCI. However, variability across MCI subjects that do not conform to the
“amnestic”subtype is likely to be accounted for better by the use of the SM-RVR multiple
regression technique. Brain fluorodeoxyglucose PET imaging provides a measure of
synaptic functioning and may be most useful as a predictor of clinical progression, as
exemplified by predicting conversion of MCI to AD. Depending on the specific application
pertaining to diagnostic accuracy or therapeutic monitoring, SM-RVR methodology may be
adapted to help streamline clinical therapeutic trials.

Limitations
Our proposed method is limited in the following aspects. First, our proposed regression
method separately estimates different clinical variables, without considering their inherent
correlations and further exploiting the class labels to aid the accurate estimation of
regression variables. Second, our proposed method is based on the multimodal data, i.e.,
MRI, PET, and CSF, and thus requires each subject to have the corresponding modality
data, which limits the size of sample set that can be used for study. Besides MRI, PET, and
CSF, there also exist other modalities of data, i.e., APOE, in ADNI database. However, due
to the fact that not every subject has all available multimodal data, we are not able to
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investigate the contribution of those modality data in the current study, although in principle
the inclusion of data from more modalities could further improve the regression
performance.

Conclusion
This paper proposes a novel semi-supervised multimodal regression method, namely SM-
RVR, to estimate the clinical scores of subjects from both imaging and biological
biomarkers, i.e., MRI, PET and CSF. Our method assumes that the clinical scores obtained
from MCI subjects may be less stable than those of AD and NC subjects due to the
heterogeneity of MCI, and thus MCI subjects should be used as unlabeled data in a semi-
supervised regression framework, rather than as labeled data in the conventional supervised
regression framework. Furthermore, a scheme for selecting the most informative MCI
subjects for helping train regression model is also developed. Experimental results on 202
baseline subjects from ADNI database show that our proposed method can achieve better
performance than the state-of-the-art methods in estimating clinical scores based on pattern
regression.
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Fig. 1.
A template with 93 manually-labeled ROI regions used for automated labeling of MRI and
PET images
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Fig. 2.
The flowchart of M-RVR
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Fig. 3.
Distributions of AD, NC and MCI subjects with CSF features. X is CSF Aβ42, Y is CSF t-
tau, and Z is CSF p-tau
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Fig. 4.
The flowchart of estimating clinical scores for MCI subjects
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Fig. 5.
The flowchart of M-RVR based recursive sample selection
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Fig. 6.
Scatter plots of actual MMSE scores vs. the estimated MMSE scores for seven different
combinations of modalities. a MRI, b CSF, c PET, d MRI + CSF, e MRI + PET, f CSF +
PET, and g MRI + CSF + PET
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Fig. 7.
Scatter plots of actual ADAS-Cog scores vs. the estimated ADAS-Cog scores for seven
different combinations of modalities. a MRI, b CSF, c PET, d MRI + CSF, e MRI + PET, f
CSF + PET, and g MRI + CSF + PET
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Fig. 8.
MMSE estimation results with respect to different combining weights of MRI, PET and CSF
for SM-RVR. CSF weight denotes asCCSF, and MRI weight denotes as CMRI. Note that PET
weight CPET is not shown, since it can be determined as CPET = 1 − CCSF − CMRI. a RMSE
for MMSE Estimation, a CORR for MMSE Estimation

Cheng et al. Page 23

Neuroinformatics. Author manuscript; available in PMC 2013 September 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
ADAS-Cog estimation results with respect to different combining weights of MRI, PET and
CSF for SM-RVR. CSF weight denotes asCCSF, and MRI weight denotes asCMRI. Note that
PET weight CPET is not shown, since it can be determined as CPET = 1 − CCSF − CMRI. a
RMSE for ADAS-Cog Estimation, b CORR for ADAS-Cog Estimation
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Fig. 10.
Comparison of SM-RVR with UNSM-RVR and M-RVR, with respect to the use of different
number of unlabeled samples (MCI subjects). a RMSE in estimating MMSE, b CORR in
estimating MMSE, c RMSE in estimating ADAS-Cog, and d CORR in estimating ADAS-
Cog
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Table 1

Clinical and demographic information for 202 subjects (mean ± std)

AD MCI NC

No. of subjects 51 99 52

Age 75.2±7.4 75.3±7.0 75.3±5.2

Education 14.7±3.6 15.9±2.9 15.8±3.2

MMSE 23.8±1.9 27.1±1.7 29.0±1.2

ADAS-Cog 18.3±6.0 11.4±4.4 7.4±3.2

AD Alzheimer’s disease, MCI mild cognitive impairment, NC normal control, MMSE mini-mental state examination, ADAS-Cog Alzheimer’s
disease assessment scale-cognitive subscale

Neuroinformatics. Author manuscript; available in PMC 2013 September 02.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Cheng et al. Page 27

Table 2

Regression performance of SM-RVR with respect to different combination of MRI, PET and CSF modalities

Modality MMSE ADAS-Cog

RMSE CORR RMSE CORR

MRI 2.17 0.73 5.16 0.70

CSF 2.45 0.60 5.62 0.64

PET 2.46 0.62 5.04 0.71

MRI + CSF 2.03 0.77 4.98 0.74

MRI + PET 2.09 0.76 4.73 0.76

PET + CSF 2.38 0.66 4.89 0.73

MRI + CSF + PET 1.92 0.80 4.45 0.78

MMSE mini-mental state examination, ADAS-Cog Alzheimer’s disease assessment scale-cognitive subscale, RMSE root mean square error,
CORR correlation coefficient
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Table 3

Comparison of regression performance of SM-RVR and M-RVR

Methods MMSE ADAS-Cog

RMSE CORR RMSE CORR

M-RVR (AD + NC) 2.22 0.73 4.92 0.73

M-RVR (AD + NC + MCI) 2.25 0.75 5.03 0.75

SM-RVR (AD + NC + MCI) 1.92 0.80 4.45 0.78

MMSE mini-mental state examination, ADAS-Cog Alzheimer’s disease assessment scale-cognitive subscale, RMSE root mean square error,
CORR correlation coefficient
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Table 4

Comparison of regression performance of M-RVR vs. MConcat, and SM-RVR vs. SMConcat

Methods MMSE ADAS-Cog

RMSE CORR RMSE CORR

MConcat 2.17 0.52 5.04 0.57

M-RVR 2.14 0.54 4.69 0.64

SMConcat 2.07 0.75 4.72 0.75

SM-RVR 1.92 0.80 4.45 0.78

MMSE mini-mental state examination, ADAS-Cog Alzheimer’s disease assessment scale-cognitive subscale, RMSE root mean square error,
CORR correlation coefficient, MConcat feature concatenation for supervised multimodal RVR, SMConcat feature concatenation for semi-
supervised multimodal RVR
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Table 5

Comparison of regression performance of M-RVR vs. M-SVR, and SM-RVR vs. SM-SVR

Methods MMSE ADAS-Cog

RMSE CORR RMSE CORR

M-SVR 2.16 0.53 4.87 0.62

M-RVR 2.14 0.54 4.69 0.64

SM-SVR 2.01 0.77 4.58 0.77

SM-RVR 1.92 0.80 4.45 0.78

MMSE mini-mental state examination, ADAS-Cog Alzheimer’s disease assessment scale-cognitive subscale, RMSE root mean square error,
CORR correlation coefficients, M-SVR supervised multimodal SVM regression, SM-SVR semi-supervised multimodal SVM regression, M-RVR
supervised multimodal RVR, SM-RVR semi-supervised multi-modal RVR
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Table 6

Comparison with the state-of-the-art methods

Method Clinical score Data set Result

Wang et al. 2010 MMSE 23 AD, 74 MCI, 22 NC MMSE: RMSE=3.29, CORR=0.76

Fan et al. 2010 MMSE, ADAS-Cog 52 AD, 148 MCI, 64 NC MMSE: RMSE=2.12, CORR=0.57

ADAS-Cog: RMSE=5.03, CORR=0.52

Stonnington et al. 2010 MMSE, ADAS-Cog Set1 Set1

73 AD, 91 NC MMSE: CORR=0.70

Set2 Set2

113 AD, 351 MCI, 122 NC MMSE: CORR=0.48

ADAS-Cog: CORR=0.57

Set3 Set3

39 AD, 92 MCI, 32 NC MMSE: CORR=0.51

ADAS-Cog: CORR=0.47

Zhang et al. 2012 MMSE, ADAS-Cog 45 AD, 91 MCI, 50 NC MMSE: CORR=0.70

ADAS-Cog: CORR=0.74

Our proposed method MMSE, ADAS-Cog 51 AD, 99 MCI, 52 NC MMSE: RMSE=1.92, CORR=0.80

ADAS-Cog: RMSE=4.45, CORR=0.78

RMSE root mean square error, CORR correlation coefficients, MMSE mini-mental state examination, ADAS-Cog Alzheimer’s disease assessment
scale-cognitive subscale
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